
Model-based Teaching and Learning with Hypermodels:
What do they learn? How do they learn? How do we know?

Barbara C. Buckley, Janice D. Gobert, & MaryAnn T. Christie
The Concord Consortium

Abstract

The research presented in this paper is part of a large-scale design study conducted in
demographically diverse classrooms with software that is under development. BioLogica, a
hypermodel environment for learning genetics, was used in multiple classes in eight high
schools. BioLogica activities, data logging, and assessments were refined across this series of
implementations. All students took a genetics content knowledge pre- and post-test and
completed epistemological and experiential surveys.  Traces of students’ actions and responses
to computer-based tasks were electronically collected (via a “log file” function) and
systematically analyzed. An intensive three-day field test involving twenty-four middle school
students served to refine methods and create narrative profiles of students’ learning experiences,
outcomes, and interactions with BioLogica.  Since BioLogica activities, the instruments used to
assess learning, and data logging capabilities changed over the course of the year, we report on
two high school implementations and the field test as self-contained studies to document the
changes and the outcomes at different phases of development.
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We are developing a computer-based learning environment that we hope will enable students in
high school classrooms to build a deep understanding of core concepts in Mendelian genetics.
The pedagogical challenges are numerous.  What do we mean by deep understanding? How can
we help them develop this deep understanding?  How do we know when they’ve done so?
Fortunately, we’re part of a team that has been working on these challenges for several years
with funding from NSF.  This paper focuses on the learning that takes place when students use
BioLogica, an interactive genetics curriculum, in their high school classrooms.  It presents the
model of learning we use, what this looks like in practice, how we determine the nature and
extent of student learning when BioLogica is used in high school classrooms, and what we’ve
learned about all of the above.

Our research is a large-scale design study conducted in demographically diverse classrooms with
software that is under development. BioLogica was used in 8 high schools and in an intensive 3
–day field test with 24 middle school and high school students during their spring break.  In this
paper we report on two high school implementations where three teachers taught both
experimental and control classes as two separate studies and on the intensive field test in a third
study.  We conclude with a discussion that draws from all three studies and points the way for
future research and development.

Model-based learning

The theory we employ is an elaboration and extension of Model-Based Teaching and Learning
(MBTL) set forth in a special issue of the International Journal of Science Education (Gobert &
Buckley, 2000).  The tenets of model-based learning are based on the presupposition that
understanding requires the construction of mental models of the phenomena under study, and
that all subsequent problem-solving, inferencing, or reasoning are done by means of
manipulating or ‘running’ these mental models (Johnson-Laird, 1983). We view mental models
as internal, cognitive representations used in reasoning of many kinds (Brewer, 1987; Rouse &
Morris, 1986). Mental models, like prior knowledge, influence our perceptions of phenomena
and our understanding of information. Interactions with phenomena and representations, in turn,
influence our mental models (Gentner & Stevens, 1983; Johnson-Laird, 1983).

Before proceeding, it is important to define the different types of models we use in addition to
the notion of models as mental representations of phenomena.  Our starting point is Norman’s
(Norman, 1983) differentiation of models related to a target system or phenomenon that is to be
represented or modeled. Norman distinguishes not only the learners’ mental models but also the
scientist’s and designer’s conceptual models of the system, as well as the researchers’
conceptualization of the learner’s mental models.

The hypermodels used in this project are another type of model that we add to the framework of
models described by Norman (1983).  Hypermodels are conceptual models realized as computer
models embedded in interactive curricula. These are external representations (as opposed to
mental models, which are internal representations) with which the learner interacts, and in doing
so, constructs and/or revises his/her mental model. Representations are considered models only
when they represent structural, dynamic, and/or causal aspects of the target model; that is, they
are not just visualizations or diagrams of phenomena.
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With these definitions in mind, we define model-based learning as a dynamic, recursive process
of learning by constructing mental models of the phenomenon under study.  It involves the
formation, testing, and subsequent reinforcement, revision, or rejection of mental models.  This
is analogous to hypothesis development and testing seen among scientists (Clement, 1989).  See
Figure 1.

Figure 1. Model-based Learning Framework

In response to the demands of a task, a learner draws on prior knowledge and new information
during model-formation to construct a mental model of some phenomenon (Buckley, 1992,
2000; Kozma, Jones, Wykoff, & Russell, 1992).  The learner’s prior knowledge may include a
partial mental model of the phenomenon or naive models that are incompatible with the
scientifically accepted model. If the learner’s model is used successfully to accomplish the task,
the model is reinforced (Clement, 1989) and may eventually become a precompiled, stable
model (Vosniadou & Brewer, 1992) from which students are capable of making inferences, etc.
However, if inconsistencies and/or deficiencies in the model are noted (Bransford, Sherwood,
Vye, & Rieser, 1986), the learner may reject the model and form a new one, or revise the initial
model (Chinn & Brewer, 1993; Clement, 1989; Schauble, Glaser, Raghavan, & Reiner, 1991).
Model revision may involve modifying parts of the existing model or elaborating the model by
adding to or combining existing models. Embedding a model in a larger model is an example of
elaboration (deKleer & Brown, 1983; Monaghan & Clement, 1994; Stewart & Hafner, 1991).
Thus, the mental model evolves through multiple recursions as it is made increasingly complex
and, hopefully, more accurate (Johnson-Laird, 1983; White & Frederiksen, 1998).
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Model-based Teaching with the BioLogica Hypermodel

Hypermodels are software environments that allow learners to interact with a manipulable model
of some phenomenon in a domain (Horwitz, 1995, Horwitz and Christie, 1999). Hypermodels
are controlled by short programs, or activity scripts, that mediate a learner’s interactions with the
model.

Figure 2.  BioLogica Hypermodel

The core of the BioLogica hypermodel (See Figure 2) is a model of Mendelian genetics that
represents the genetic mechanisms of inheritance as the parts and processes that take place at
multiple levels of biological organization.  The learner interacts with the model through
manipulable representations appropriate to the task posed by the activity script. Because the
manipulable representations operate on the core model, changing any one of them can affect
each of the others, as appropriate. For example, altering an organism’s genotype can affect not
only that organism, but also any of its offspring that happen to inherit the altered gene. The
activity scripts are used to orchestrate instructional activities built around a series of challenges.
The pedagogical elements outlined in Table I scaffold the learner’s interaction with the
challenge, the manipulable representations and ultimately with the model of Mendelian genetics.
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Table I.  Pedagogical elements in activity scripts
Element Description Location
Advance organizer or orienting
task

Briefly describes expected
performance in terms of focus
question, content and actions

Headlines in login screen
Elaborated in introduction screen

Narratives The narrative into which puzzles
are woven

Begun in introduction and woven
throughout the activity

Tasks & puzzles Require  cause-to-effect and
effect-to-cause reasoning, within
and between generations

The heart of all activities

Representations Assist Links diagrams with vocabulary,
highlights structures involved in
genetics

Rollover exploration when new
representation is introduced

Reasoning models Walks learner through reasoning
strategies

After initial exploration of
concept and representations

Explanations Summarizes concepts and models
good explanations

After completion of task/puzzle

Embedded Questions About representations, models, &
reasoning
About the pieces of the model
central to the activity

Throughout activity

Feedback on actions & responses Monitors responses and problem
solving actions

More frequent initially then fades
away before assessment questions

Parallel phenomena exposure Scenarios and questions about
genetics in others species and in
humans

After in-depth exploration and
experimentation with dragon
genetics

Assessment Questions General concepts
Activity specific

End of activity

Reflective questions What they knew
What they learned
What they wonder about now

End of activity

Each of the elements serves both pedagogical purposes and research purposes.  For example,
embedded questions are intended to facilitate a deeper engagement on the part of the learner by
posing questions that require more attention to the details of the activity.  They are also intended
to elicit responses from which we can infer the state of the learner’s mental models. Narratives
and instructions model the kind of reasoning a geneticist might pursue in solving a challenge.
Activity scripts also monitor a learner’s actions so that constructive feedback can be given as
appropriate. Explanations and solutions are provided only after the learner has had an
opportunity to grapple with the challenge.   Each activity also creates a log file that records
students' actions and responses and can be processed to yield information useful to teachers,
students and researchers.

Research Design and Methods

Our research is a large-scale design study conducted in demographically diverse classrooms with
software that is under development. The activities, data logging, and assessments were refined
across a series of implementations. Data were collected in multiple classes from one middle
school and eight high schools. An intensive three-day field test involving twenty-four middle
school students served to refine methods and create narrative profiles of students’ learning
experiences, outcomes, and interactions with BioLogica.    From this massive amount of data, we
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will focus on three studies conducted at various times in the development of BioLogica to
examine both development issues and research findings. Since BioLogica activities, the
instruments used to assess learning, and data logging capabilities changed over the course of the
year, we report on two high school implementations and the field test as self-contained studies.
To provide a frame for these studies we begin by describing the development of activities,
assessments and data logging.

Development of Activities

Prior research with GenScope (Hickey, Kindfield, Horwitz, & Christie, 1991, 1999; Hickey &
Kindfield, 1999; Hickey, Wolfe, & Kindfield, 1998b; Horwitz et al., 1998; Kindfield & Hickey,
1999) guided the initial development of BioLogica activities, which are built around a series of
puzzles or challenges.   BioLogica activities began to be used in classrooms in November 2000.
Revision of these activities was informed by classroom observations in three schools, prior
research by the authors (Buckley, 2000; Buckley & Boulter, 2000; Gobert, 2000), and by the
model-based teaching and learning framework described earlier.  During the first phase of testing
(11/00 through 2/01) BioLogica was used in three high schools, the number of activities was
increased from 8 to 12, the first data logging was implemented, and a Teacher’s Guide was
created.  Table II summarizes the development of BioLogica activities and data logging during
the second phase of testing and implementations in five schools. It shows the activities included
in each version, which activities were added or revised (◊), important additions or modifications,
and finally which sites used this version.  Fixing bugs in the software was ongoing. This paper
describes the implementations at sites “M” and “L” and the field test at “MV”.   See Appendix A
for a more complete description of BioLogica activities.

Table II.  Summary of BioLogica Activities Development
Release date 3/01 4/01 5/1/01
Activities Introduction

Rules
Meiosis
Inheritance
Monohybrid
Mutations
Mutations Inheritance
Horns Dilemma
Dihybrid
Sex Linkage
Sex Linkage II
Scales
Plates

GenScope

◊Introduction
◊Rules
◊Meiosis
Inheritance
Monohybrid
Mutations
Mutations Inheritance
Horns Dilemma
Dihybrid
◊Sex Linkage

Scales
Plates
◊Invisible Dragons
GenScope

Introduction
Rules
Meiosis
Inheritance
Monohybrid
Mutations
Mutations Inheritance
Horns Dilemma
Dihybrid
Sex Linkage

Scales
Plates
Invisible Dragons
GenScope

Significant changes Changed sex
determination to match
humans

Scaffolds in Intro &
Rules, data logging
refinements

LogIn/LogOut
    time stamps

Implementation
sites

M MV (field test) L, CC, GM



Model-Based Teaching & Learning with Hypermodels 6 Buckley, Gobert & Christie

Development of pre and post tests

Like the activities, the pre and post tests evolved over the academic year 2000-2001. In the initial
implementation of BioLogica at site “MR” the pre and post tests were identical. The instrument
consisted of 70 NewWorm items originally developed for the GenScope project (Hickey, Wolfe,
& Kindfield, 1998a).  Identical pre and post tests were administered at site “F”, using a new,
shorter, version of NewWorm from Hickey and Kindfield with the addition of four multiple
choice items consisting of published items from MCAS and NY Regents exams. We learned that
most students and many teachers considered even the 35-item test too long.  In subsequent
implementations (see Table III below) items were deleted from the test if the item tested a
concept (such as crossing-over) that was not addressed in any of the BioLogica activities used in
that implementation.  The pre test items were a subset of the post test items. Additional multiple
choice items were included to better assess how students performed on standardized test items
and a few multiple choice questions were included that addressed common naive conceptions.
Because the NewWorm test assumes an understanding of genetics terminology, but doesn’t test
for that understanding independent of the problem solving required for most NewWorm items,
we introduced open-ended conceptual questions beginning with implementations in April 2001.

Table III.  Developmental progression of pre and post tests
Sites

Type of items
MR

11/00
F

2/01
M

Pre
3/01

M Post
3/01

MV Pre
4/01

MV Post
4/01

L Pre
5/01

L Post
5/01

CC Pre
5/01

CC Post
5/01

NewWorm 70 31 23 27 0 32 23 32 25 32
Multiple choice 0 4 3 7 9 11 0 13 11 11
Open-ended 0 0 0 0 8 17 0 17 9 17

We examined all items on the pre and post tests in three ways: (1) using the matrix of reasoning
patterns identified by Hickey, Wolfe, and Kindfield (Hickey et al., 1998b), (2) using a model-
based learning perspective (Buckley & Boulter, 1999, 2000), and (3) identifying the genetics
concept tested. The reasoning matrix has two dimensions: between vs. within generations, and
cause-toeffect vs. effect-to-cause. Hickey et al (1998b) demonstrated that questions involving
cause-to-effect were easier than effect-to-cause and that reasoning within a generation was easier
than reasoning across generations.  Drawing on the model-based learning framework, we
analyzed items using a method developed for analyzing representations (Buckley & Boulter,
1999, 2000).  This analysis focused primarily on the models of parts (structures) and processes
needed to answer the question. We have not yet analyzed the utility and reliability of these
dimensions.

Development of data logging

First, what do we mean by data logging?  When students use BioLogica activities, the activity
scripts that guide and control students’ interactions with the underlying genetic models generate
log files.  The specific entries in a given log file are generated either automatically or by design.
The automatic entries are used to capture start and stop times for an activity or a given challenge
within the activity and to capture learners’ responses to questions posed by the activity script.
The designed entries can be tailored to answer specific research questions and provide
assessment data for teachers, students, and researchers. Embedded questions were added to
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activities implemented in April 2001 and later.  In addition, most activity scripts capture
learners’ actions, such as how many crosses were made or what alleles were changed, as they
explore and experiment with the representations of the underlying genetic model.   Thus, the
content of log files varies not only by activity but also by user.

The use of data logging increased throughout the year.  Table IV summarizes the state of data
logging across several implementations.  During the first use of BioLogica in November 2000
only 5 activities generated log files.  Of the 54 logs generated by 13 students only 57% were
usable; that is, the other 43% were empty, lacking even a time stamp. This is caused either by the
user quitting the activity immediately after launch or by a program crash.  By May 2001 all 13
activities generated log files eventually achieving a yield rate of 94%.

Table IV.  Implementation of Data Logging
Implementation Site  MR 11/00 M  3/01 MV  4/01 L  5/01 C  5/01

Activities Logged (N)
Students (N)
Logs generated(N)
Usable Logs (N)
Yield (%)

5
13
54
31
57

10
45

5715

12
24

438
319

73

13
120

2128
1566

74

13
34

214
201

94

Implementation Studies

At “M” and “L” high schools, three teachers taught both control classes and experimental
classes.  At site “L” three additional teachers used BioLogica with a range of biology classes.
These implementations are reported in Study 1 and Study 2. We used the data collected during
the intensive field test conducted at site “MV” to develop methods for analyzing log files.  That
work is reported in Study 3.

Study 1: “M” High School

Two teachers “C” and “V” used BioLogica in their tenth grade biology classes in March 2001.
Each teacher taught two sections for the same length of time. The control section received the
teacher’s usual lessons in genetics.  The experimental section used BioLogica shortly after a
‘sex-change’ operation that changed the dragon’s sex chromosomes to match the human pattern
of XX for females and XY for males.  This change in the software introduced many bugs that
affected the learners’ interactions with BioLogica.   The number of logs generated is one
measure of the technological problems encountered during this implementation.  The 45 students
who used BioLogica generated over 5000 logs — a monument to the teachers’ and students’
persistence and patience in using new software.

The pre test consisted of 23 NewWorm items, plus 3 multiple choice items about common
misconceptions for a total of 38 points.  The post test consisted of 27 NewWorm items and 7
multiple choice items (3 from pre test and 4 from standardized tests).
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Study 1A: Teacher “C”, Survey of Biology course

Analysis of Pre-test.
A t-test was computed in order to test for pre-test differences before the implementation in
Teacher C’s classes.  There were no statistically significant differences found between the
control and experimental groups on the pre-test (t = .994; p = .328; cX = 18.7, eX = 16. 5).

Analysis of Post-Test.
An Analysis of Variance (ANOVA) was computed in order to determine whether there were any
statistically significant differences on the total post-test score between the experimental and
control groups.  For this ANOVA the dependent variable was the total post-test score, the
independent variable was group (experimental versus control), and the pre-test score was used as
a covariate.  There was a statistically significant difference found between the control and
experimental groups on the post-test with the control group scoring higher.  See Table V.

Table V. Comparison of pre and post test means for Survey of Biology course.
Pretest Post test

Group N Total
number
of points

Mean
Std.
Dev.

Total
number

of
points

Mean
Std.
Dev.

F
statistic

Significance
(p value)

Control 14 38 18.7 7.2 59 28.4 9.4
Experimenta
l

20 38 16.5 6.1 59 23.9 9.1
14.164 .000*

*significant at p<.05α

Analysis of Selected Post-Test Items.
Because this is a largely exploratory study, we conducted a series of ANOVAs in which we
selected items from the post-test and pooled them according to the concept that they were
assessing.  The pooled items assessed students’ understanding of: inheritance, dominance, sex
linkage, genotype and phenotype, monohybrid, dihybid, and pedigree.  For each of these
analyses, the pre-test scores were used as a covariate to allow us a more accurate measure of
post-test differences between the control and experimental groups.

There was a statistically significant difference found between the control group and the
experimental group on three concepts: dominance, genotype and phenotype, and monohybrid.
For dominance and monohybrid the control group scored higher, whereas for genotype and
phenotype the experimental group scored higher.  These results are summarized in Table VI.  No
statistically significant difference was found on inheritance, sex linkage, dihybrid, or pedigree.
See Appendix B for a summary table of this data.
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Table VI. Concepts with Statistically Significant Differences between Control and Experimental
Groups

Dependent variable
Mean

Control
Experimental

F statistic
Significance
(p value)

2.357
dominance

1.800
7.387 .002*

6.607
genotype/phenotype

7.025
3.594 .039*

9.607
monohybrid

7.575
13.850 .000*

*significant at p < .05

ANOVAs were computed in a series of analyses in which we selected items from the post-test
and pooled them according to the type of reasoning that they were assessing.  The pooled items
assessed students on seven different types of reasoning skills: cause-to-effect within generations
(cew), effect-to-cause within generations (ecw), cause-to-effect between generations (ceb),
effect-to-cause between generations (ecb), Punnett square, structure, and process.  For each of
these analyses, the pre-test scores were used as a covariate to allow us a more accurate measure
of post-test differences between the control and experimental groups.

There was a statistically significant difference found between the control group and the
experimental group on three types of reasoning: cause-to-effect between generations (ceb),
Punnett squares, and structure. It should be noted, however, that the Levene’s Test of Equality of
Error Variances (which tests whether the error variances of the two groups are equal, was
significant for Punnett squares and structure.  Thus, we must interpret the results regarding the
two groups’ performance on these scores with caution. Students in the control group scored
higher on pooled items assessing their reasoning skills of cause-to-effect between generations as
well as their reasoning skills on Punnett squares.  Students in the experimental group scored
higher on pooled items assessing their reasoning skills on structure.  These results are
summarized in Table VII.  No statistically significant difference was found on effect-to-cause
within generations (ecw) and effect-to-cause between generations (ecb), however, the control
group means were higher than the experimental group means.  No statistically significant
difference was found on cause-to-effect within generations (cew).  An ANOVA could not be
performed on process as the mean and standard deviation was zero (0).  See Appendix B for a
summary table of the data for “M” high school, Survey of Biology course.
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Table VII. Summary of Types of Reasoning with Statistically Significant Differences between
Control and Experimental Groups.

Dependent variable
Mean

Control
Experimental

Levene’s
Test F statistic

Significance
(p value)

6.107cause-to-effect between
generations (ceb) 4.700

.793 12.607 .000*

9.571
Punnett square

7.100
.024* 13.689 .000*

.071
structure

.600
.000* 6.317 .005*

*significant at p<.05

Study 1B: Teacher “V”, College Biology course

Analysis of Pre-test.
A t-test was computed in order to test for pre-test differences before the implementation in
Teacher V’s classes.  There were no statistically significant differences found between the
experimental and control groups on the pre-test (t = .893; p = .378; cX = 19.1, eX = 17.2).

Analysis of Total Post-Test.
An Analysis of Variance (ANOVA) was computed in order to determine whether there were any
statistically significant differences on the total post-test score between the experimental and
control groups.  For this ANOVA the dependent variable used was total post-test score, the
independent variable used was group (control versus experimental) and the pre-test score was
used as a covariate.  There was a statistically significant difference found between the control
and experimental groups on the post-test  with the experimental group scoring higher.  See Table
VIII.

Table VIII. Comparison of pre and post test means for College Biology course.
Pretest Post test

Group N Total
number
of points

Mean
Std.
Dev.

Total
number

of
points

Mean
Std.
Dev.

F
statistic

Significance
(p value)

Control 12 38 19.1 5.4 59 37.8 8.9
Experimenta
l

25 38 17.2 6.3 59 38.4 7.1
3.757 .034*

*significant at p<.05α

Analysis of Selected Post-Test Items.
ANOVAs were computed in a series of analyses in which we selected items from the post-test
and pooled them according to the concept that they were assessing.  The pooled items assessed
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students’ understanding of: inheritance, dominance, sex linkage, genotype and phenotype,
monohybrid, dihybid, and pedigree.  For each of these analyses, the pre-test scores were used as
a covariate to allow us a more accurate measure of post-test differences between the control and
experimental groups.

There was a statistically significant difference found between the control group and the
experimental group on two concepts: inheritance and pedigree.  For inheritance, the control
group scored higher, whereas for pedigree the experimental group scored higher.  It should be
noted, however, that the Levene’s Test of Equality of Error Variances (which tests whether the
error variances of the two groups are equal, was significant for inheritance.  Thus, we must
interpret the results regarding the two groups’ performance on this score with caution.  A
summary of results on inheritance and pedigree can be found Table IX.  No statistically
significant difference was found at p < .05α  on dominance, sex linkage, monohybrid and
dihybrid, however, the experimental group means were higher than the control group means.  No
statistically significant difference was found on genotype and phenotype.  See Appendix B for a
summary table of this data.

Table IX. Summary of Concepts with Statistically Significant Differences between the Control
Means and Experimental Means

Dependent variable
Mean

Control
Experimental

Levene’s Test F statistic
Significance
(p value)

2.417
inheritance

1.640
.014* 4.268 .022*

.500
pedigree

.960
.770 4.085 .026*

*significant at p < .05α

ANOVAs were computed in a series of analyses in which we selected items from the post-test
and pooled them according to the type of reasoning that they were assessing.  The pooled items
assessed students on seven different types of reasoning skills: cause-to-effect within generations
(cew), effect-to-cause within generations (ecw), cause-to-effect between generations (ceb),
effect-to-cause between generations (ecb), Punnett square, structure, and process.  For each of
these analyses, the pre-test scores were used as a covariate to allow us a more accurate measure
of post-test differences between the control and experimental groups.

There was a statistically significant difference between the control group means and the
experimental group means on one type of reasoning: cause-to-effect within generations (cew).
The control group means for this type of reasoning were higher than the experimental group
means. It should be noted, however, that the Levene’s Test of Equality of Error Variances (which
tests whether the error variances of the two groups are equal, was significant for this type of
reasoning.  Thus, we must interpret the results regarding the two groups’ performance on these
scores with caution.  These results are summarized in Table X.  No statistically significant
difference was found at p = .05α  on effect-to-cause within generations (ecw) and Punnett
squares; however, the control group means were higher than the experimental group means.  No
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statistically significant difference was found at p = .05α  on cause-to-effect between generations
(ceb), effect-to-cause between generations, and structure; however, the experimental group
means were higher than the control group means.  An ANOVA could not be performed on
process as the mean and standard deviation was zero (0).  See Appendix B for a summary table
of the data for “M” High School, Teacher “V”.

Table X. Summary of Types of Reasoning with Statistically Significant Differences between the
Control Means and Experimental Means

Dependent variable
Mean

Control
Experimental

Levene’s
Test

F statistic
Significance
(p value)

5.833cause-to-effect within
generations (cew) 5.120

.022 4.688 .016*

*significant at p < .05α

Study 2:  “L” High School
During this implementation in May 2001, four teachers used BioLogica daily for one week with
a range of classes.  In addition, one of the teachers taught two control classes of ninth grade
students matched with her two experimental classes.

BioLogica activities were more stable than during the “M” implementation, but still not totally
bug free.  There were two changes in activities compared to the previous implementation: Sex-
Linkage and Sex-Linkage II were combined and revised into one activity and Invisible Dragons,
a game that requires reasoning from effect-to-cause between generations, was added.  The data
logging generated accurate start and end times.  Although we weren’t able to match log files to
individual classes, we were able to average across all the logs for this implementation. Table XI
summarizes the logs collected at “L” high school for all classes.

Table XI.  Logs collected at “L” high school.
Implementation Site L  5/01

Activities Logged (N) 13
Students (N) 120
Logs generated(N) 2128
Valid Logs (N) 1566
Yield (%) 74
1) Introduction logs (N) 273
2) Rules logs (N) 266
3) Meiosis logs (N) 283
4) Inheritance logs (N) 130
5) Monohybrid logs (N) 204
6) Mutations logs (N) 98
7) Mutations 2 logs (N) 36
8) Horns Dilemma logs (N) 32
9) Dihybrid logs (N) 26
10) Sex-Linkage logs (N) 52
11) Scales logs (N) 35
12) Plates logs (N) 25
13) Invisible Dragons logs (N) 106

We could not determine with precision what proportion
of students completed each activity.  However, we can
estimate which activities were completed and which
were not completed by most of the students.  We
estimated that the first five activities were completed
by all students.  Similarly, it is likely that most of the
students did not complete activities after Monohybrid.
Even Invisible Dragons with 106 logs may be the result
of a small number of students using the activity
multiple times.  See Study 3 for more detailed
information on processing and analyzing log files.
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We used this information in conjunction with item analysis of the post test to identify which
items on the post test to exclude from analysis.  We examined the mean score on each item
across the entire data set from “L”.  We looked at each item that had a mean of less than 50% of
the possible points and considered whether it tested a concept that most of the students had
explored with BioLogica.  If it tested understanding of a concept that was included in the first
five activities, we did not exclude the item.  Conversely, if the items with low mean scores were
not covered in the first five activities we excluded the item from further analysis. By mistake, an
older version of the pretest was administered that included only 23 NewWorm items.  The post
test consisted of 32 NewWorm items, 13 multiple choice items that covered misconceptions and
standardized test items, and 17 open-end concept questions for a total of 106 points.  We
excluded 19 items, which resulted in a possible maximum score of 62 points.  Therefore, the
analysis reported in this study is based on what we term ‘relevant’ test items. We report first the
study of the ninth grade classes, then the school wide results.

Study 2A: Ninth grade control and experimental classes

The two control classes received the teacher’s usual introduction to genetics during the week that
the two experimental classes used BioLogica.  One of the experimental classes received an
introductory lesson prior to using BioLogica but the other did not.

Analysis of Pre-test.
A t-test was computed in order to test for pre-test differences before the implementation in the
four classes at “L” high school.  There was a statistically significant difference found between
the four groups on the pre-test (See Table XII). Post hoc contrasts yielded that the differences
found were between the “red” group and the other three groups, “yellow, “green”, and “blue”.

Table XII.  Comparison of pretest means for Ninth Grade classes.
Pretest

Class
Group

N Total
number
of points

Mean
Std.
Dev.

F
statistic

Significance
(p value)

blue Control 16 40 12.3 2.9
yellow Control 20 40 13.1 3.5
green Experimental 22 40 13.6 3.7
red Experimental 14 40 9.0 6.1

4.14 .009*

*significant at p<.05α

Analysis of Post-Test.
We pooled the two control groups and the two experimental groups since it was the same teacher
and the same level of students in all four groups. The pre-test score was used as a covariate in
order to take into account the pre-test differences. An Analysis of Variance (ANOVA) was
computed in order to determine whether there were any statistically significant differences on the
total post-test score between the experimental and control groups.  For this ANOVA the
dependent variable was total post-test score, the independent variable was group (control versus
experimental), and the pre-test score was used as a covariate.  There was a statistically
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significant difference found between the control and experimental groups on the post-test with
the experimental group scoring higher.  See Table XIII.

Table XIII. Comparison of Control and Experimental Groups on Post test mean with Pretest
covariate.

Pretest Post test

Group N Total
number
of points

Mean

Total
number

of
points

Mean
Std.
Dev.

F
statistic

Significance
(p value)

control 36 40 12.7 62 25.7 11.0
experimental 36 40 11.8 62 31.1 10.6

6.269 .003*

*significant at p<.05α

Analysis of Selected Post-Test Items.
ANOVAs were computed in a series of analyses in which we selected items from the entire post-
test and pooled them according to the concept that they were assessing.  The pooled items
assessed students’ understanding of: inheritance, dominance, sex linkage, genotype and
phenotype, monohybrid, dihybid, and pedigree.  For each of these analyses, the pre-test scores
were used as a covariate to allow us a more accurate measure of post-test differences between the
control and experimental groups.

There was a statistically significant difference found between the control group and the
experimental group on two concepts: monohybrid and dihybrid.  For both concepts the
experimental group scored higher than the control group.  A summary of results on monohybrid
and dihybrid can be found Table XIV.  No statistically significant difference was found on
inheritance, dominance, sex linkage, genotype and phenotype or pedigree.  See Appendix C for a
summary table of this data.

Table XIV. Concepts with Statistically Significant Differences between the Control and
Experimental Groups.

Dependent variable
Mean

Control
Experimental

F statistic
Significance
(p value)

7.444
monhybrid

9.167
5.798 .005*

1.250
dihybrid

1.694
4.261 .018*

*significant at p < .05α

ANOVAs were computed in a series of analyses in which we selected items from the post-test
and pooled them according to the type of reasoning that they were assessing.  The pooled items
assessed students on seven different types of reasoning skills: cause-to-effect within generations
(cew), effect-to-cause within generations (ecw), cause-to-effect between generations (ceb),
effect-to-cause between generations (ecb), Punnett square, structure, and process.  For each of
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these analyses, the pre-test scores were used as a covariate to allow us a more accurate measure
of post-test differences between the control and experimental groups.

There was a statistically significant difference found between the control group and the
experimental group on six of the seven types of reasoning: cause-to-effect within generations
(cew), cause-to-effect between generations (ceb), effect-to-cause between generations (ecb),
Punnett squares, structure and process.  The experimental group means were higher than the
control group means on the following types of reasoning: cause-to-effect within generations
(cew), cause-to-effect between generations (ceb), Punnett squares, structure, and process.  The
control group means were higher than the experimental group means on effect-to-cause between
generations (ecb). It should be noted, however, that the Levene’s Test of Equality of Error
Variances (which tests whether the error variances of the two groups are equal, was significant
for cause-to-effect within generations, and effect-to-cause between generations.  Thus, we must
interpret the results regarding the two groups’ performance on these scores with caution.  These
results, therefore, should be interpreted with caution.  These results are summarized in Table XV.
No statistically significant difference was found at p = .05α  on effect-to-cause within
generations.  See Appendix C for a summary table of the data for “L” High School.

Table XV. Types of Reasoning with Statistically Significant Differences between Control and
Experimental Groups

Dependent variable
Mean

Control
Experimental

Levene’s
Test

F statistic
Significance
(p value)

4.472cause-to-effect within
generations (cew) 5.083

.019* 5.734 .005*

5.958cause-to-effect between
generations (ceb) 7.056

.904 5.951 .004*

5.792effect-to-cause between
generations (ecb) 5.694

.011* 3.572 .033*

5.250
Punnett square

5.653
.987 4.280 .018*

2.917
structure

4.139
.192 3.985 .023*

.667
process

1.194
.059 7.420 .001*

*significant at p < .05
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 Study 2B: Analysis of all class levels at “L”

Although the ninth grade was the only class level with controls, three other teachers used
BioLogica with their biology students.  Analysis of the pre and post test scores for those classes
are compared in Table XVI.

Table XVI.  Pre and post test scores for different class levels
Pretest Post test

Type of
Class

N Total
Number
of points

Mean

Total
number

of
points

Mean
Std.
Dev.

F
statistic

Significance
(p value)

ninth
grade

36 40 11.8 62 31.1 10.6

business
biology

6 40 8.8 62 17.1 5.5

college
prep
biology

49 40 13.1 62 31.3 12.6

honors
biology

30 40 21.6 62 47.3 9.4

26.941 .000*+

*significant at p<.05α
+Levene’s Test for Equality of Error Variances is significant at p<.05α

Post hoc contrasts (see Table XVII) reveal that the honors biology class significantly
outperforms the other classes on the post test and that the business biology class significantly
underperforms the other classes.  It is interesting that the ninth graders did as well as the college
prep biology.

Table XVII.  Tukey HSD post hoc contrasts across class types.
Type of Class

(mean)
Type of Class Mean

Standard
Deviation

Significance
(p value)

business biology 17.1 5.5 .025*

college prep biology 31.3 12.6 1.000
ninth grade

(31.1)
honors biology 47.3 9.4 .000*

ninth grade 31.1 10.6 .025*

college prep biology 31.3 12.6 .018*business biology
(17.1)

honors biology 47.3 9.4 .000*

ninth grade 31.1 10.6 1.000
business biology 17.1 5.5 .018*college prep biology

(31.3)
honors biology 47.3 9.4 .000*

ninth grade 31.1 10.6 .000*

business biology 17.1 5.5 .000*honors biology
(47.3)

college prep biology 31.3 12.6 .000*

*significant at p<.05α
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Study 3: Intensive 3-day field test at “MV”

The primary purpose of the intensive field test was to find bugs in the software. A secondary
purpose was to investigate the usefulness of log files for helping us understand what and how
students learn when using BioLogica.  Log files were intended from the start as a research tool to
help us (a) assess what learners understand, (b) how that understanding changes and (c) how they
use BioLogica.  We’re trying to develop a fine-grained understanding of how different students
learn with BioLogica.  However, we also want to identify variables that can be quantified and
used as covariates in analyzing pre and post test gains.  In this study we looked for ways to
design and process log files so that they provide the data needed in a format that can be analyzed
with less effort.

We decided to use the data collected during the intensive field test for this study because it is a
small population that completed nearly all of the BioLogica activities under relatively controlled
circumstances.  We reasoned that because it was not a classroom situation, learning gains could
be attributed more fully to BioLogica use.  Therefore, connections between log files and learning
should be more direct and less influenced by other classroom variables.

In the intensive field test conducted at site “MV” in April 2001, 24 middle school and high
school students were paid to use all the BioLogica activities over a 3-day period and to take the
pre and post tests and surveys. Students used computers in two rooms.  In one room there were
10 students working individually on iBooks.  In the other room 14 students worked on iMacs; 10
students worked in 5 pairs and 4 students worked individually.  They used an earlier version of
the same set of activities used in the “L” high school implementation.  The Invisible Dragons
activity was used for the first time on the last day of the field test.  The composition of the pre
and post tests is shown in Table XVIII.

Table XVIII.  Test composition for “MV”
Sites

Type of items
MV Pre

4/01
MV Post

4/01
NewWorm 0 32
Multiple choice 9 11
Open-ended 8 17

A total of 387 log files were generated, of which 306 or 79% were usable files.  Files that contain
no date or data beyond the user name and the activity name are unusable.  They are caused either
by the user deciding not to run the activity or by the activity script crashing.

An excerpt from an unprocessed log file is shown in Table XIX.  The full version of the log file
can be found in Appendix D. The user’s name has been changed for privacy reasons.  Each log
contains the following kinds of data: user name, date & time, question & answer, and actions
(basically mouse clicks), automatically identified with XML tags such as <user> or <date>. The
XML tags enable the logs to be processed for different purposes.
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Table XIX.  Selections from an unprocessed log file generated by the Introduction activity.

- <log>
  <user>julia</user>
- <question>
  <date>2001.04.17.21.46.01 04/17/01 | 21:46:01</date>
  Good job! You've created your first dragon. How would you describe it? Does anything surprise you
about this dragon? Type your description in the box below.
  <answer>this dragon has no arms or wings and also no fire.</answer>
  </question>

- <question>
  <date>2001.04.17.21.46.18 04/17/01 | 21:46:18</date>
  Quite a variety of dragons here! Dragons apparently come in many different colors. What OTHER
differences do you notice? Type your answer in the box below.
  <answer>There are many types of dragon . I pictured dragons to look like the frist male on my
list.</answer>
  </question>

- <question>
  <date>2001.04.17.21.57.40 04/17/01 | 21:57:40</date>
  What did you notice as you examined their chromosomes? Type your answer in the box below.
  <answer>You could have the same chromosomes but if you had the wrong mixer you could kill the
dragon.</answer>
  </question>

- <action>
  <date>2001.04.17.22.03.17 04/17/01 | 22:03:17</date>
  Matched comparison dragon after 28tries.
  </action>

- <question>
  <date>2001.04.17.22.20.19 04/17/01 | 22:20:19</date>
  Explain why the dragons you created in this activity look different from one another.
  <answer>they have diffrent types of chromosomes that make diffrent cells.</answer>
  </question>

  </log>

Analyzing log files for BioLogica use

The objective in analyzing log files was to identify and characterize variables we could use to
quantify and compare the use of BioLogica across students. What kinds of data are useful in
explaining the results of the pre and post tests?  Given the variability across implementations,
one of the first questions is: Which of the activities did the students complete?  Related process
questions are: How much time did learners spend on an activity?  How mindful was their
interaction with the activity? What challenges did they accomplish? How easily? Which
questions did they attempt?  Were their answers correct?  How thoughtful were their answers?
We cannot yet answer these questions with a reasonable degree of reliability or effort.

Even from the brief excerpt in Table XIX, it is clear how time-consuming it is to make sense of
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unprocessed log files.  Therefore, we chose to analyze the logs of a small subset of learners who
represented different levels of prior knowledge and performance on the post test.

We began by analyzing the pre and post test scores to identify the subset of learners.  We plotted
the post test scores against the pre test scores (See Figure 3).
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Figure 3.  Scatter plot of post test scores against pretest scores for field test participants.

We chose to examine the log files for five students, labeled TF, CG, CV, GH, and MB. MB was
chosen for high scores on both the pre test and the post test.   GH was chosen to represent a
successful student with an average pre test score.  TF was chosen because he came in with a low
pre test score and didn’t perform very well on the post test. CG and CV were chosen as a result
of observations made while they were working through BioLogica activities. CG is dyslexic and
reads with difficulty, but worked diligently on activities.  CV scored well on the pre test but was
observed mindlessly clicking through, rather than reasoning through, an activity.

The next challenge was identifying the logs of these students. Students could type in any name or
variation of that name when they logged in to use an activity. In this study we were able, with
reasonable yield and effort, to connect the log files to individual learners.

To determine which activities the learner used, we created a computer program to strip out the
XML tags and generate a file of tab-delimited text that could be imported into a database or
spreadsheet, which could then be sorted.  Table XX shows the activities used by student GH in
the order in which they were used, when, and for how long.  There were also four empty logs
indicating bugs or aborted launches.
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Table XX.  Activities used by GH
Activity date time length of time
Introduction 4/17/01 21:33:53 0:31
Rules 4/17/01 22:19:44 0:53
Rules 4/17/01 23:06:57 0:01
Meiosis 4/18/01 1:04:17 0:18
Inheritance 4/18/01 1:32:31 0:03
Monohybrid 4/18/01 1:37:40 0:14
Mutations 4/18/01 1:53:28 0:27
Mutations2 4/18/01 2:25:38 0:20
HornsDilemma 4/18/01 21:21:08 0:03
HornsDilemma 4/18/01 21:26:00 0:09
Dihybrid 4/18/01 21:44:23 0:17
Plates 4/18/01 23:17:18 0:05
Sex-Linkage 4/18/01 23:25:27 0:21

 Total      3:42

The initial approach to analyzing the log files was to read through the logs of one student at a
time in order to develop a sense of that student's path through BioLogica, what challenges and
questions were difficult or easy, and how engaged the student seemed to be.  By the time we had
read through the logs for all five students, we began to see patterns of data that might be relevant
and quantifiable.  In addition to the total-time, candidates for further analysis included the
proportion of questions answered, the proportion of multiple choice questions answered
correctly, how many attempts it took to solve a challenge, how much time it took to solve the
challenge, the length of time each explanation was displayed.  To date we have been able to
investigate only a few of these possibilities.

We created another computer program to process the logs to calculate how many questions the
user encountered and answered in an activity and how many words were in their answers. We
learned that the data on number-of-questions-encountered and the number-of-words-per-answer
were a better measure of the state of development of the activities than of the learner’s
engagement with the activity.

We continued to search for some measure of the quality of a learner’s interaction with the
activity. We knew from classroom observations that time spent with an activity does not
automatically equate to time engaged with an activity. Similarly, interaction with the activity in
terms of actions taken or number of mouse clicks does not necessarily equate to mindful
interaction.  We conceptualized this quality measure as an index of interaction and
operationalized it as the length of time a user spends with an activity divided by the number of
actions taken by the user.  A low index of interaction indicates many actions in a short period of
time, while a high index of interaction indicates a few actions in a long period of time.  Crashes
also affect the index of interaction.  If a user has been through part of the activity before, the
tendency is to quickly click through to reach the new portion of the activity.

We learned that our data logging is not yet systematic enough to produce meaningful numbers
for index of interaction.  The median index of interaction varied over the 11 logged activities
from  .08 to 2.0. This is primarily a reflection of the variation across activities in terms of what
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gets logged, how many challenges and questions were posed, etc.  For a given activity there does
appear to be a range of productive interaction with outliers at both extremes.  One extreme is the
very low index of interaction calculated for CV who clicked mindlessly through the activities,
playing BioLogica as if it were a game.  The other extreme, a very high index of interaction, was
calculated for CG, the dyslexic but diligent learner, who took a very long time, even with
assistance, to read the instructions and information in BioLogica, but who could then reason
through the activities very well.  Because of the length of time required for each activity, this
learner did not complete all the activities. Since learners may use different numbers of activities,
an index of interaction averaged across all activities cannot be used for comparison across
learners.

Analyzing log files for learner’s models and understanding

We were able to make the log files easier to read with text harvests, like that shown in Table
XXI.  Text harvests grew out of requests from teachers for a way of assessing students’ work
with BioLogica.  A report generator strips out all the XML tags and other entries leaving all the
questions in an activity and the answers entered by the learner.

Table XXI.   Text harvest from processed log file.
Introduction roberto <04/17/01 | 22:26:40>
Q: Quite a variety of dragons here! Dragons apparently come in many different colors. What OTHER differences do
you notice? Type your answer in the box below.
A: Some dragons have wings, some have arms, legs, both, or none at all. Others have different shaped tails, some
have horns or none, some breathe fire or not, and they have different body shapes.
Q: What did you notice as you examined their chromosomes? Type your answer in the box below.
A: The dominant alleles usually gave them the characteristics that they have.
Q: In particular, how do the chromosomes of male and female dragons differ? Type your answer in the box below.
A: The male and female chromosomes respond differently to the dominant allele.
Q: Why do you think you can't match both dragons to the comparison dragon? Type your answer in the box below.
A: I don't think the female dragon has the genes for the yellow color dragon.
Q: What do you think 'phenotype' means? Tell us in your own words and give us an example.
A: Phenotype is the physical characteristics of a person who gets it from the genes. An example would be a girl with
wavy brown hair, big brown eyes, short stature, wing shaped eyebrows, heart shaped face, etc...
Q: What is the connection between genotype and phenotype? That is, how does genotype relate to phenotype? Tell
us in your own words and give us an example.
A: They relate to each other because they involve chromosomes and alleles. The genes from the genotypes give the
physical characteristics of someone, this is the phenotype. Ex. TT this genotype gives the phenotype tall genes to
someone
Q: Explain why the dragons you created in this activity look different from one another.
A: They have different colors, shapes, sizes, legs, horns, tails, wings.
Q: Where are a dragon's genes located? Click all that apply.
A: chromosomes alleles DNA
Q: What did you know about phenotype and genotype before you started this activity?
A: Phenotype are the physical characteristics Genotype are the letters of the genes
Q: What do you think you learned while working with this introductory activity?
A: About the different male and female characteristics
Q: What question(s) do you currently have about phenotype and genotype?
A: none at the moment

Text harvests make it easier to assess one measure of a learner’s models and understanding of
genetics. They are much easier to read than log files and can be coded and scored just like pre
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and post tests.  However, they don’t enable us to infer much about learners’ learning or reasoning
strategies.  We need to consider the learner’s performance on the challenges as well.  Taken
together, the pre and post tests, text harvests, and log files can be used to describe a learner’s
path through BioLogica.  An example using the data generated by GH is included in Appendix E.
The log files of different students can be compared for a given activity.  In another paper we will
present the results of Study 3 as case studies of individual students with cross case comparisons.

For this paper, the important findings of Study 3 relate to what we’ve learned about creating and
analyzing log files.  We present these as an annotated wish list of requirements for data logging.

• Consistent user names.
We now use a log-in procedure that requires students to use pull down menus to select
first, the class name, and then, their name from the class roster.  This should greatly
increase our yield of useful logs as well as the usefulness of those logs in understanding
how BioLogica use influences genetics learning.

• Relevant variables such as school, class level, and gender
These are also included when configuring the class roster for the log-in procedure.  We
may also decide to  include variables such as ESL for non-native speakers or IEP for
those on individualized education plans.

• Systematic logging of performance on challenges
This will require analysis of existing activity scripts and the logs they generate to develop
the fine-grained data needed and ways of post-processing that data for easier analysis.

• ID tags for questions embedded in scripts
Each question embedded in a script should have an identifier that enables a person or
program to pull all the responses to that question from the database.

• Precode questions and tasks
Each question, action, and task could be associated with one or more data analysis codes
to facilitate content and statistical analysis.

• Fine-grained time stamps and calculations of time spent working on pedagogical elements
This also requires consistent use of pedagogical elements within scripts in order to
calculate time spent on activities such as reading explanations or manipulating alleles.

The task of mining useful data from log files continues as we try to develop ways of generating
logs that are more systematically related to research questions and variables and ways of
analyzing logs in less labor intensive ways that are useful to teachers and students as well as
researchers.

Discussion

In the three studies presented we have tried to illustrate how fruitful it can be to conduct
classroom-based research with interactive curricula.  We have also illustrated how difficult such
studies can be.  Conducting the kinds of studies presented in this paper requires the systematic
development of a series of tasks that engage learners, scaffolding that helps them learn how to
accomplish the tasks, ongoing assessments to help us understand what and how students are
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learning, and how to use technology to support and facilitate all of the above.  It’s harder than we
thought.

Study 1: “M” high school, March 2001

In Study 1 students in a Survey of Biology course and a College Biology course used a version
of BioLogica without scaffolding or metacognitive prompts.  In addition, there were considerable
technical difficulties in getting the activities to run properly.  Both of these may have contributed
to the findings: there were significant differences between the control group and the
experimental group in both classes; however, for the Survey of Biology course, the control group
scored higher than the experimental group.  The experimental group in the College Biology
course outperformed the control group on the post test.  These findings may indicate that the
students in the Survey of Biology needed the kinds of scaffolding we put in later versions of
BioLogica more than the students in the College Biology course.  This is a tentative hypothesis
we can put to the test in future research.

Study 2: “L” high school, May 2001

The ninth grade students in the experimental groups used a more stable version of BioLogica that
included scaffolding in about half of the activities.  We are therefore delighted to see that the
experimental group outperformed the control group.  When we examine the kinds of items on
which they outperformed the control group, we see that it is primarily on the easier type of
reasoning from cause-to-effect which is a good starting point.  We don’t know from the data logs
how many of the activities students actually completed because of the difficulty of matching logs
to individual students.  The experimental groups also outperformed the control groups on the
structure and process items.  This is encouraging because parts and processes are what students
manipulate in many BioLogica activities.  They also are critical aspects of model-based learning
(Buckley, 2000; Buckley & Boulter, 2000; Gobert, 2000; Gobert & Buckley, 2000).  Their
performance on Punnett squares is also encouraging because of the frequency with which
Punnett squares are used as reasoning tools in BioLogica activities.

Although the improvement in the results between Studies 1 and 2 is encouraging, we don’t yet
feel that we have a complete model of model-based learning with hypermodels. The contrasting
data between the different classes is most likely a result of student differences; however, there
are other possibilities as well.

The results may indicate a need for teacher professional development in using technology in
classrooms.  In some work presently underway by our group, we are looking closely at teacher
variables and classroom culture variables in order to determine what aspects of teachers’
pedagogy needs to change in order to implement technology successfully in the classroom
(Horwtiz et al, 2001 (MAC grant); (Christie, 2002b).  Effecting change in teachers’ pedagogical
strategies with technology and affecting classroom culture are the two next areas we as a
community need to address so that it can make full use of technology in classrooms.  We look
forward to being able to consider the data from log files to better understand how learners use
BioLogica and how that influences what they learn.
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This paper has focused on the cognitive aspects of model-based learning, but there are individual
and classroom factors influencing whether and to what extent a learner may actually engage in
model-based learning. The presumed motivation for engaging in model-based learning is a desire
to understand. Motivation theorists conceptualize this desire as an intrinsic love of  ‘learning for
learning’s sake’ (Ames, 1992; Nicholls, 1989). It is also described as intrinsic motivation (Deci
& Ryan, 1985; Lepper & Chabay, 1985; Lepper & Malone, 1987), a learning orientation rather
than a performance orientation (Dweck, 1986), or an intentional learning stance (Bereiter &
Scardamalia, 1989). Extrinsic motivation arising from teacher assessment is also a factor in
students’ engagement in classroom activities whether computer-based or not.

We acknowledge that both intrinsic motivation and the extent to which extrinsic factors may
influence motivation and learning differ not only by student but also by the context and culture in
which the student learns (Christie, 2002a). Christie’s work on students’ perceptions of learning
(Christie, 1999, 2001, 2002a) has shown promising indications that motivational constructs also
vary within domain and between tasks, according to the modality, e.g., text-based versus
computer-based representations. Thus, students’ achievement cognitions (Christie, 2001, 2002a),
their understanding of the nature of models (Gobert & Discenna, 1997; Gobert, Snyder, &
Houghton, 2002) and of science (Schommer, 1993) may influence not only their motivation to
engage in learning but also the strategies they employ in response to the task (Songer & Linn,
1991), and ultimately, the outcomes.

Lastly, we acknowledge that classroom culture plays a highly influential role in student learning
(Ames, 1992; Ames & Ames, 1984; Perkins, 1995). More often than not the role of classroom
culture in learning has been excluded from research in student content learning. We believe that
understandings about classroom culture are critical to our work and to any research that is
situated in the classroom (Christie, 2002a).  We are integrating classroom culture into our MBTL
framework from an educational anthropological perspective, which views culture as a set of
shared beliefs held by and acted upon by participants in that culture (Spindler 1987; Spradley,
1972).

We have student surveys from the implementations presented in this paper that are intended to
help us articulate and investigate the impact of learners’ views of the nature of models and their
views of science learning.  It will be a first step in elaborating our model of model-based learning
to include these other factors.

Future research

As we demonstrated in Study 3, particularly, there is much we still need to invent and to
investigate in developing effective interactive curricula that support model-based learning with
hypermodels.  We continue to grapple with the tension between gathering as much data as
possible about each learner’s understanding and the priorities and time constraints of the
classroom.  We must also fine-tune the assessments and activities for better alignment both with
each other and with the model-based teaching and learning framework.

There is considerable research begging to be done on assessment using interactive items.  We’re
not talking about adaptive testing but rather about using interactive items to assess a learner’s
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problem solving or model-building skills in a hypermodel environment such as BioLogica.  We
question how well traditional test items assess the state of learners’ models of phenomena and
plan to invesitgate the affordances that the hypermodel environment brings to this question.
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Appendix A: Description of BioLogica Activities

(1) Introduction—What do dragons look like and why?

Introduction guides the user through BioLogica's representations of chromosomes, genes, and
alleles and stresses the connection between genotype and phenotype.  As learners use pulldown
menus in the Chromosome View to change allele combinations, they see changes in the
Organism View of BioLogica's dragons.

Goals:

Help user become familiar with the operation of the interface by using pull down menus in the
Chromosome View to make changes in the appearance of the organism in the Organism View.
Enable user to link the representations in BioLogica with genetics concepts of traits, genotype,
phenotype, chromosomes, genes and alleles.

Key Concepts:

Genotype determines phenotype.
Definition of traits, genotype, phenotype, chromosomes, genes and alleles

Levels/Views: Organism View, Chromosome View

(2) Rules--How do genes affect appearance?

The Rules activity is divided into three sub-activities that can be invoked independently via a
menu selection. These are: 1) Traits, which deals with the four autosomal traits of dragons
genetics – horns, wings, number of legs, and shape of tail; 2) Firebreathing, which introduces a
sex-linked trait, and 3) Colors, which are polygenic and pleiotropic traits. one of the color genes
contains a recessive lethal allele. Traits and Firebreathing are essential introductions to
dominance, recessive, incomplete dominance, and sex-linkage.  At this point in its development,
BioLogica does not build on the Colors subactivity.

Goals

Enable user to explore the variable effects of changing alleles and allele combinations on
appearance.
Provides opportunity for user to develop and use note-taking representations and search
strategies.
Introduce concepts of dominance, recessive, incomplete dominance, and sex-linkage as well as
homozygous and heterozygous.

Key Concepts

Genotype determines phenotype.
Particular allele combination produces particular trait.
Dominance/recessive/sex-linked inheritance

Levels/Views: Organism View, Chromosome View
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(3) Meiosis: What do meiosis and fertilization have to do with making offspring?

Meiosis is also subdivided into three subactivities.  Introduction to Meiosis, Meiosis Shuffles and
Deals! and Designer Dragons. Introduction to Meiosis focuses on learning to use the interface
and linking the representations with the concepts of gametes, meiosis and fertilization. It
provides an introductory view into the process of gamete creation and the random distribution of
the alleles and allows the student to inspect the alleles in each gamete and to choose
combinations of gametes to fertilize.  Meiosis Shuffles and Deals! links the representations with
the names of the phases of meiosis found in textbooks. Designer Dragons offers students a
series of challenges in the form of creating specific offspring by examining the chromosomes in
the gametes from each parent and selecting those that will produce the desired phenotype in the
offspring.

Goals

Introduce monohybrid inheritance stressing the equal contribution of each parent, the random
shuffling of genes into gametes, and selection of gametes for fertlization.

Key Concepts

Meiosis
Fertilization
Chromosome segregation
Gamete selection

Levels/Views: Organism View, Meiosis View, Chromosome View

(4) Inheritance: What determines what the offspring look like?

Unlike the Meiosis activity where students select gametes to determine combinations of alleles
that will be “passed down” to the offspring, the Inheritance activity uses the pedigree view,
which emphasizes the randomness of this process in nature. It thus serves as an introduction to
the role of probability in genetics. The Monohybrid activity is a useful follow-on to this one.

Goals

Examine the effect of random variation on the distribution of traits in a generation of offspring.
Explore how the dominant & recessive properties of alleles determine proportion of offspring
with trait.

Key Concepts

Monohybrid inheritance
Proportions

Levels/Views: Pedigree View, Organism View, Chromosome View
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(5) Monohybrid: Do traits really skip generations?

Monohybrid introduces and uses Punnett Squares to help students understand how the
combinatorics of meiosis and fertilization (an exhaustive count of all possible combination of
parental genes) enables one to derive the probability that an offspring will possess a certain trait,
and leads eventually to a prediction of the likely fraction of offspring with the trait in a sample of
size n.

Goals

Examine the effect of random variation on the distribution of traits in a generation of offspring.
Use Punnett Squares to understand how the dominant & recessive properties of alleles determine
the proportion of offspring with a particular trait.

Key Concepts

Monohybrid inheritance
Punnett Squares
Combinatorics -> probability -> statistics

Levels/Views: Meiosis View, Pedigree View, Punnett Square, Chromosome View

(6)Mutations--What happens when you change the DNA?

This activity introduces and uses the BioLogica DNA View, which provides an expanded view
of the red lines on chromosomes that represent genes. The activity introduces students to the
DNA and base pairs that form particular alleles and challenges students to modify the DNA of a
dragon and to observe the consequences.

Goals

Introduction to Molecular Level (DNA) of genetics
Make students aware of what mutations actually look like at the DNA level
Focus attention on some of the varieties of ways in which mutated alleles can result in alterations
in phenotypes.

Levels/Views: Organism View, Chromosome View, DNA View

 (7) Mutation Inheritance —How are mutations inherited?

This activity uses mutations to explore alternative modes of inheritance of traits that are
controlled by genes with more than two alleles.

Goals

To support student investigations of some of the things that can happen when a gene comes in
more than two varieties.

Key Concepts

Modes of inheritance, non-Mendelian genetics
Levels/Views: Pedigree View, Organism View, Chromosome View, DNA View
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(8) Horns Dilemma--Can two horned parents have a hornless baby?

This activity focuses students’ attention on the connection between parental genes and those of
the offspring, in the context of posing a challenge that requires the student to alter a parental
gene, making it heterozygous so that a homozygous recessive offspring can result.

Goals

Encourage multilevel thinking and confidence in model
Exercise effect-to-cause & cause-to-effect reasoning

Key Concepts

Inheritance of “hidden” traits

Levels/Views: Organism View, Chromosome View, Meiosis View

(9) Dihybrid

This activity explores what happens when you study the inheritance patterns for 2 traits at a time.
It provides experience with dragons with traits on the same chromosome and with peas with
traits on different chromosomes.

Key Concepts

Effect of independent assortment of chromosomes on the inheritance of two traits.

Levels/Views: Pedigree View, Organism View, Chromosome View

 (10) Sex Linkage -- What difference does it make if a gene is on the X chromosome?

This activity begins with a review of how the X and Y chromosomes interact to produce male
and female (introduced in the Rules activity). Once it is clear to the students that female dragons
are XX and males are XY, the activity uses the firebreathing (recessive, X-linked) trait to help
them learn how sex-linked traits are inherited.

Goals

Reinforce the XX = female, XY = male pattern.
Help students to understand how and why sex-linked inheritance differs from autosomal
inheritance.

Key Concepts

Sex-linked inheritance

Levels/Views: Pedigree View, Organism View, Chromosome View
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(11) Scales—What causes that Scaly Skin?
This is an advanced activity that guides the student through the process of investigating a trait –
scaly skin – the gene for which has been hidden. Four questions are asked: Are scales genetically
inherited? Are they recessive or dominant? Are they sex-linked or autosomal? And which
chromosome are they on?

Goals

Learn to investigate how a new trait is inherited, using nothing but breeding information.

Key Concepts

Inference of mode of inheritance from statistics

Levels/Views: Pedigree View, Organism View, Chromosome View

(12) Plates

Plates is similar to scales, but with incompletely dominant traits.

Goals

The challenge is to figure out where the gene for this new trait is located. More practice with a
problem that closely approximates the reasoning process of professional scientists.

Key Concepts

Investigating how new traits are inherited from statistics

Levels/Views: Pedigree View, Organism View, Chromosome View

 (13) Invisible Dragons

In this activity we test the student’s ability to solve a real genetics puzzle. They are presented
with 2 invisible dragons and their task is to figure out the genetic makeup of this couple. They
may make crosses, look at the chromosomes and even make a backcross, but all of these costs
money. The players start out with $20000 in the bank. Each procedure costs money as does each
wrong answer. Players make money by answering questions correctly.

The important part of the exercise is the development of strategies for getting the answers,
something every geneticist has to learn. These are:
• Check the sex-linked traits first. You can usually tell what the Dad’s genes are by the F1

generation.
• Do a backcross—cross a recessive offspring with either the father or mother. If the dominant

trait shows up, you know that the parent has it.
• Cross 2 dominant offspring. If they produce at least one recessive child, you know that each

of them carries a recessive gene.

GenScope

This is an open-ended interface to all the BioLogica functionality. It has no “story line” or
monitoring functions. GenScope is essentially a BioLogica implementation of GenScope that
runs on the Mac and the PC.
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Appendix  B: Summary Tables for Site “M” (Study 1)

Study 1A, Survey of Biology Course, Teacher “C”

Control = 14 students; Experimental = 20 students

Univariate Analysis of Variance (ANOVA) – using pretest as a covariate

Question
subgroup

Dependent
variable

Mean

control
experimental

F
statistic

Significance
(p value)

Number
of items

Total
number of

points

28.357All
questions

posttest
23.850

14.164 .000∗ 23 59

1.786inheritance
.950

2.074 .143 3 3

2.357dominance
1.800

7.387 .002* 5 7

2.214sex-linkage
1.200

2.103 .139 4 7

6.607genotype/
phenotype 7.025

3.594 .039* 9 9

9.607monohybrid
7.575

13.850 .000* 6 17

.286dihybrid

.200
.049 .952 1 1

.500

concept

pedigree
.850

2.043 .147 2 4

4.357cew
4.650

1.251 .300 6 6

2.750ecw
2.625

2.264 .121 4 4

6.107ceb
4.700

12.607 .000* 6 11

5.571ecb
4.250

2.344 .113 12 19

9.571Punnett square
7.100

13.689 .000* • 4 16

.071structure

.600
6.317 .005* • 1 1

.000

type of
reasoning

process
.000

N/A N/A 1 1

                                                  
∗ significant at p < .05α
• Levene’s Test for Equality of Error Variances is significant at p < .05α
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Study 1B, College Biology Course, Teacher “V”

Control = 12 students; Experimental = 25 students

Univariate Analysis of Variance (ANOVA) – using pretest as a covariate

Question
subgroup

Dependent
variable

Mean

control
experimental

F
statistic

Significance
(p value)

Number
of items

Total
number of

points

37.833All
questions

posttest
38.400

3.757 .034∗ 23 59

2.417inheritance
1.640

4.268 .022* • 3 3

3.667dominance
3.760

.805 .456• 5 7

1.917sex-linkage
2.440

1.973 .155 4 7

8.208genotype/
phenotype 8.080

1.638 .209• 9 9

13.583monohybrid
14.100

2.806 .074+ 6 17

.167dihybrid

.480
.740 .485 1 1

.500

concept

pedigree
.960

4.085 .026* 2 4

5.833cew
5.120

4.688 .016* • 6 6

3.375ecw
3.360

1.061 .357 4 4

8.250ceb
8.600

2.470 .100 6 11

6.583ecb
7.480

2.826 .073+ 12 19

13.250Punnett square
13.140

1.815 .178 4 16

.417structure

.640
2.824 .073+ 1 1

.000

type of
reasoning

process
.000

N/A N/A 1 1

                                                  
∗ significant at p < .05α
• Levene’s Test for Equality of Error Variances is significant at p < .05α
+ significant at p < .05α
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Appendix C:  Summary Table for Site “L” (Study 2)

Ninth grade classes: Total number of students = 72
Control group = 36 students: Experimental group = 36 students

Summary Table of Univariate Analyses of Variance Using Pretest as a Covariate

Question
subgroup

Dependent
variable

Mean

control
experimental

F
statistic

Significance
(p value)

Number
of items

Total
number of

points

30.000All
questions

posttest
34.431

5.355 .007∗ 52 106

5.778inheritance
6.472

1.870 .162 10 15

3.875dominance
4.722

2.524 .088+ 8 13

1.000sex-linkage
1.139

1.143 .325 6 10

8.208genotype/
phenotype 9.028

1.527 .225 11 11

7.444monohybrid
9.167

5.798 .005* 8 19

1.250dihybrid
1.694

4.261 .018* 4 6

.778

concept

pedigree
.750

1.098 .339 3 6

4.472cew
5.083

5.734 .005* • 6 6

2.569ecw
2.750

2.630 .079+ 4 4

5.958ceb
7.056

5.951 .004* 11 18

5.792ecb
5.694

3.572 .033* • 15 22

5.250Punnett square
5.653

4.280 .018* 4 16

2.917structure
4.139

3.985 .023* 7 10

.667

type of
reasoning

process
1.194

7.420 .001* 3 6

                                                  
∗ significant at p < .05α
• Levene’s Test for Equality of Error Variances is significant at p < .05α
+ significant at p < .10α
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Appendix D: Unprocessed log file [annotations by Buckley in square brackets]

- <log>
  <user>julia</user>
- <question>
  <date>2001.04.17.21.46.01 04/17/01 | 21:46:01</date>
  Good job! You've created your first dragon. How would you describe it? Does anything surprise you about this
dragon? Type your description in the box below.
  <answer>this dragon has no arms or wings and also no fire.</answer>
  </question>

- <question>
  <date>2001.04.17.21.46.18 04/17/01 | 21:46:18</date>
  Quite a variety of dragons here! Dragons apparently come in many different colors. What OTHER differences do
you notice? Type your answer in the box below.
  <answer>There are many types of dragon . I pictured dragons to look like the frist male on my list.</answer>
  </question>

- <action> [This should have a question tag even though it is a radio button multiple choice.]
  <date>2001.04.17.21.50.16 04/17/01 | 21:50:16</date>
  How many pairs of chromosomes do dragons have: 2 [This is an incorrect answer, but it was not tallied or
monitored.]
  </action>

- <action>
  <date>2001.04.17.21.50.16 04/17/01 | 21:50:16</date>
  Did you kill any dragons: No
  </action>

- <question>
  <date>2001.04.17.21.57.40 04/17/01 | 21:57:40</date>
  What did you notice as you examined their chromosomes? Type your answer in the box below.
  <answer>You could have the same chromosomes but if you had the wrong mixer you could kill the
dragon.</answer>
  </question>

- <question>
  <date>2001.04.17.21.57.40 04/17/01 | 21:57:40</date>
  In particular, how do the chromosomes of male and female dragons differ? Type your answer in the box below.
  <answer>They could look the same but there chromosomes could be diffrent.</answer>
  </question>

[The following is an example of an action that is a challenge task.  The script counts the number of
allele changes needed to change the genotype of one dragon to produce the phenotype of the
comparison dragon.]
- <action>
  <date>2001.04.17.22.03.17 04/17/01 | 22:03:17</date>
  Matched comparison dragon after 28tries.
  </action>

- <action>
  <date>2001.04.17.22.04.36 04/17/01 | 22:04:36</date>
  Student clicked YES, they think that the second dragon can be made to look like the comparison dragon.
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  </action>

- <action>
  <date>2001.04.17.22.04.43 04/17/01 | 22:04:43</date>
  Student clicked NO, they don't think that the second dragon can be made to look like the comparison dragon.
  </action>
[looks like user changed their mind.  This is also useful]

- <question>
  <date>2001.04.17.22.06.18 04/17/01 | 22:06:18</date>
  Why do you think you can't match them? Type your answer in the box.
  <answer>they are two diffrent types.</answer>
  </question>

- <action>
  <date>2001.04.17.22.07.51 04/17/01 | 22:07:51</date>
  Matched second comparison dragon after 14tries.
  </action>

[this is the first of the open ended conceptual questions at the end of the activity.]
- <question>
  <date>2001.04.17.22.16.41 04/17/01 | 22:16:41</date>
  What do you think 'genotype' means? Tell us in your own words and give us an example.
  <answer>It is the type in the diffrent chromosomes in the male and female.</answer>
  </question>

- <question>
  <date>2001.04.17.22.17.07 04/17/01 | 22:17:07</date>
  What do you think 'phenotype' means? Tell us in your own words and give us an example.
  <answer>i do not now</answer>
  </question>

- <question>
  <date>2001.04.17.22.18.24 04/17/01 | 22:18:24</date>
  What is the connection between genotype and phenotype? That is, how does genotype relate to phenotype? Tell us
in your own words and give us an example.
  <answer>I do not now.</answer>
  </question>

[This is the first of the questions that focus on the user’s understanding of the activity.]
- <question>
  <date>2001.04.17.22.20.19 04/17/01 | 22:20:19</date>
  Explain why the dragons you created in this activity look different from one another.
  <answer>they have diffrent types of chromosomes that make diffrent cells.</answer>
  </question>

- <question>
  <date>2001.04.17.22.22.00 04/17/01 | 22:22:00</date>
  Phenotype determines genotype.
  <answer>False</answer>
  </question>

- <action>
  <date>2001.04.17.22.22.00 04/17/01 | 22:22:00</date>
  In order of decreasing size: dna = 2 dragons = 4 genes = 3 chromosomes = 1.
  </action>
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- <question>
  <date>2001.04.17.22.22.00 04/17/01 | 22:22:00</date>
  Where are a dragon's genes located? Click all that apply.
  <answer>chromosomes DNA</answer>
  </question>

- <question>
  <date>2001.04.17.22.26.30 04/17/01 | 22:26:30</date>
  Alleles are particular forms of: Click all that apply.
  <answer>chromosomes genes</answer>
  </question>

- <question>
  <date>2001.04.17.22.26.30 04/17/01 | 22:26:30</date>
  Particular combinations of alleles determine: Click all that apply.
  <answer>traits chromosomes</answer>
  </question>

- <question>
  <date>2001.04.17.22.26.30 04/17/01 | 22:26:30</date>
  Please explain your answer in the box below.
  <answer>they said in the begining that all the things you see of the dragon are called traits. Im not shear that thous
are the exsact words but thats what I remember.</answer>
  </question>

[this is the first of the reflective questions]
- <question>
  <date>2001.04.17.22.26.35 04/17/01 | 22:26:35</date>
  What did you know about phenotype and genotype before you started this activity?
  <answer />
  </question>

- <question>
  <date>2001.04.17.22.26.36 04/17/01 | 22:26:36</date>
  What do you think you learned while working with this introductory activity?
  <answer />
  </question>

- <question>
  <date>2001.04.17.22.26.40 04/17/01 | 22:26:40</date>
  What question(s) do you currently have about phenotype and genotype?
  <answer />
  </question>

  </log>
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Appendix E: Learning path of GH.

Based on responses to open-ended questions on the pre test, GH began the study with a model of inheritance
as something you receive from parents or grandparents and that it is a random process. "I guess it's when
genes are passed down to you." The chromosome is "some sort of gene" and traits as "some quality of you".  No
responses were offered for fertilization, pedigree or sex-linked.  This is a potentially good basis for beginning
to use BioLogica in that GH recognizes genotypic entities (genes and chromosomes) as well as phenotypic
entities(traits).

According to available logs, GH did not complete the Scales activity. GH seemed to have little difficulty
completing most of the challenges in the activities — until encountering the pedigree view in Monohybrid.  GH
answered questions, could define dominant and recessive in terms of representations by upper case and lower
case letters respectively, but sometimes had difficulty applying them to multiple choice questions embedded in
the Rules activity.  GH was able to reason with and manipulate the meiosis representation and make the
connection between the representations of chromosomes and alleles in chromosome and meiosis views. GH
could reason with Punnett squares but seemed to lack a strategy for making crosses and reasoning about the
results in pedigree view.  [Monohybrid seems to be a place where scaffolding is needed to help learners figure
out and reason with this new representation.]  Dihybrid and Plates logs provide further evidence of difficulties
with pedigree use and reasoning.  In Plates, for example, GH made just one cross, looked at chromosomes and
concluded (incorrectly) that plates are recessive because "the quality didn't seem to travel through the genes
often."  The evidence for dominance seems to be frequency.

Responses to the questions on the post test suggest that there is some confusion about the physical
relationship among chromosomes, genes, and alleles.  The chromosome is now "the group of genes or alleles that
give traits" and a gene is "a group of DNA". But allele is "a group of genes/DNA", which suggests that allele is
not understood.  Heterozygous, homozygous and autosomal alleles are understood, but dominant, recessive and
sex-linked are not. Dominance seems to associated solely with the frequency with which it turns up in the
offspring.  For example, dominance is "the overpowering type of alleles that determine more in the offspring
outcome" while recessive is "the 'weak' type of alleles that determine less in offspring".  This is echoed in a
later explanation "If there is complete dominance, the offspring should all have the trait." Sex linked is "when
an allele is different in each of the sexes (on either the X or the Y chromosome)".

The mechanisms of inheritance (meiosis and fertilization) were defined as "the process in which DNA
is taken from the parents and made into an offspring" and "when an egg from the female and sperm from the
male is brought together to form an offspring", respectively.  It is not clear whether this is part of a mental
model of meiosis, or a text-based definition.

In the NewWorm portion of the post test, the learner was able to map from genotype to phenotype
and vice versa, determine the sex of the NewWorm, and create and use Punnett squares effectively to reason
about monohybrid inheritance.  The facts that [1] only 1 of the 3 dihybrid questions was answered correctly
without explanation and that [2] GH was able to identify the gametes and offspring in Punnett square but [3]
did not associate them with the outcomes of meiosis and fertilization, suggests to me the lack of a mental
model. If GH had a mental model of the chromosomes and the process of meiosis and fertilization, it would be
possible to reason about dihybrid inheritance by visualizing the movement of alleles on the same or different
chromosomes.

GH's ability to reason with the pedigree representation is unclear.  GH seems to have forgotten or did
not apply BioLogica activities in this explanation, "if having small nostrils was recessive, then the baby couldn't
have them, because the parents don't.  It then has to be dominant." This completely ignores the possibility
that the parents could be heterozygous dominant in the trait, the focus of more than one activity. Answers to
the multiple-choice questions were little changed from the pre test, just one point increase.




